Controllable Tuning Plasmonic Coupling with Nanoscale Oxidation
نویسندگان
چکیده
The nanoparticle on mirror (NPoM) construct is ideal for the strong coupling of localized plasmons because of its simple fabrication and the nanometer-scale gaps it offers. Both of these are much harder to control in nanoparticle dimers. Even so, realizing controllable gap sizes in a NPoM remains difficult and continuous tunability is limited. Here, we use reactive metals as the mirror so that the spacing layer of resulting metal oxide can be easily and controllably created with specific thicknesses resulting in continuous tuning of the plasmonic coupling. Using Al as a case study, we contrast different approaches for oxidation including electrochemical oxidation, thermal annealing, oxygen plasma treatments, and photo-oxidation by laser irradiation. The thickness of the oxidation layer is calibrated with depth-mode X-ray photoemission spectroscopy (XPS). These all consistently show that increasing the thickness of the oxidation layer blue-shifts the plasmonic resonance peak while the transverse mode remains constant, which is well matched by simulations. Our approach provides a facile and reproducible method for scalable, local and controllable fabrication of NPoMs with tailored plasmonic coupling, suited for many applications of sensing, photochemistry, photoemission, and photovoltaics.
منابع مشابه
Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.
We develop a technique that now enables surface plasmon polaritons (SPPs) coupled by nano-patterned slits in a metal film to be detected using conventional optical microscopy with standard objective lenses. The crux of this method is an ultra-thin polymer layer on the metal surface, whose thickness can be varied over a nanoscale range to enable controllable tuning of the SPP momentum. At an opt...
متن کاملNumerical Modeling of a Nanostructure Gas Sensor Based on Plasmonic Effect
In the present paper, a nanostructure plasmonic gas sensor based on ringresonator structure at the wavelength range of 0.6-0.9 μm is presented. The plasmonicmaterials/SiO2 with the advantage of high mobility and low loss is utilized as a substratefor structure to obtain some appropriate characteristics for the sensing Performanceparameters. To evaluate the proposed senso...
متن کاملPlasmonic phase modulator based on novel loss-overcompensated coupling between nanoresonator and waveguide
We present that surface plasmon polariton, side-coupled to a gain-assisted nanoresonator where the absorption is overcompensated, exhibits a prominent phase shift up to π maintaining the flat unity transmission across the whole broad spectra. Bandwidth of this plasmonic phase shift can be controlled by adjusting the distance between the plasmonic waveguide and the nanoresonator. For a moderate ...
متن کاملLithographically Patterned Nanoscale Electrodeposition of Plasmonic, Bimetallic, Semiconductor, Magnetic, and Polymer Nanoring Arrays
Large area arrays of magnetic, semiconducting, and insulating nanorings were created by coupling colloidal lithography with nanoscale electrodeposition. This versatile nanoscale fabrication process allows for the independent tuning of the spacing, diameter, and width of the nanorings with typical values of 1.0 μm, 750 nm, and 100 nm, respectively, and was used to form nanorings from a host of m...
متن کاملNanoscale modeling of electro-plasmonic tunable devices for modulators and metasurfaces.
The interest in plasmonic electro-optical modulators with nanoscale footprint and ultrafast low-energy performance has generated a demand for precise multiphysics modeling of the electrical and optical properties of plasmonic nanostructures. We perform combined simulations that account for the interaction of highly confined nearfields with charge accumulation and depletion on the nanoscale. Val...
متن کامل